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Abstract 
2023 was the warmest year on record over more than 100,000 years globally (European Environmental Agency, 

2024). The impact of climate change on asset performance, particularly for alternative energy assets and those 

based on renewable energy, is increasingly significant. Climate change introduces variability in weather patterns, 

temperatures, and precipitation, which directly affects the efficiency and output of renewable energy sources 

such as solar, wind, and hydroelectric power. For instance, solar farms may experience fluctuations in energy 

production due to changes in solar irradiance and increased incidences of extreme weather events. Similarly, 

wind farms could be impacted by alterations in wind patterns and speeds. Climate indices, which quantify various 

aspects of climate variability, play a crucial role in forecasting and assessing these impacts. By integrating 

climate indices into financial and operational models, investors and operators can better understand, anticipate, 

and manage the risks associated with climate change. This proactive approach enables more accurate 

predictions of asset performance, ensuring that renewable energy investments remain viable and sustainable in 

the face of a changing climate. 

The increasing urgency of climate change introduces two principal considerations relevant to this study. First, 

climate change compels rational investors to reassess vulnerable assets in light of potential financial materiality. 

Second, climate-related impacts are expected to intensify over time, as global temperatures are projected to rise at 

an increasing rate in a worst-case scenario, according to the European Environment Agency (see Figure 1). This 

research is a case study that examines the performance of one solar farm, a renewable energy asset, in relation to 

fluctuating electricity prices and varying climate conditions. We employ two sophisticated predictive models: a cash-

flow model using the internal rate of return (IRR) as the primary performance metric to calculate the asset’s return 

and a generalized additive model (GAM) to analyze and forecast the financial viability of the solar farm by predicting 

electricity prices, which are critical for determining the cash inflows generated by the farm. 

By integrating these models, we aim to provide a comprehensive assessment of the financial viability of solar farms 

under varying European climate conditions and electricity price scenarios. This dual-model approach not only 

enhances the predictive accuracy within the European context but also offers valuable insights into the potential 

risks and opportunities associated with renewable energy investments in this region. Our findings contribute to the 

broader discourse on sustainable finance and underscore the critical importance of incorporating climate 

considerations into financial models and investment strategies, particularly within the European framework. 

This whitepaper presents a case study focused on a French solar farm, providing a unique, specific example of 

asset modeling. The performance of this solar farm must be evaluated within the context of its geographical, 

political, cultural, and economic climate. The study underscores the necessity of considering climate change 

impacts on renewable energy assets, emphasizing how increased climate variability and rising temperatures 

could affect both the production efficiency and financial returns of solar farms in Europe. By focusing on a specific 

French solar farm, this research highlights the importance of region-specific analyses and demonstrates how 

climate change can materially impact the financial performance of alternative energy assets. 
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FIGURE 1. DEPARTURES IN TEMPERATURES (EUROPEAN ENVIRONMENTAL AGENCY, 2024)

 

Source: EEA EUCRA available at https://www.eea.europa.eu/publications/european-climate-risk-assessment 

The function used to describe the solar farm’s net cash-flow performance at each period modeled or 𝐶𝐹𝑡=𝑥  is 

seen in Figure 2: 

FIGURE 2. SOLAR FARM NET CASH-FLOW PERFORMANCE 

 

The cash-flow model utilized IRR as a traditional financial metric to determine the profitability of solar farm 

investments by calculating the expected return rates over a specified investment horizon of 35 years from the 

start of the investment’s cash flows. The solar farm we analyzed was generating electricity as of January 2015. 

We assumed 35 years or December 2014 to November 2049 was an optimistic and reasonable investment 

horizon for a solar farm.  
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To accompany the IRR cash-flow model, a GAM was created to predict energy prices in France. The GAM offers a 

flexible approach to capture the complex, non-linear relationships between climate variables—such as solar 

radiance, temperature, dew point temperature, precipitation probability, cloud cover—and electricity prices, which 

are critical determinants of revenue for solar farms. The GAM also captures the effects of seasonality observed in 

electricity prices over a time. This is a relevant feature of our predictive model since on average the whole sale 

electricity price per MWh in France fluctuates from €57.37 at 4 a.m. to €100.68 at 7 p.m. or a daily average increase 

of ~76% trough to peak daily, according to historical data from France between January 2015 and June 2024. 

Combined, the IRR analysis indicates that solar farms can offer competitive returns, while the GAM further 

expounds the intricate dependencies between climate variables and electricity prices. Together they provide an 

end-to-end understanding of the risks and opportunities associated with solar farm investments. 

By comparing the insights and predictive accuracies of both models, we present a comprehensive framework for 

evaluating the financial performance of solar farms in the face of climate variability. This research highlights the 

necessity of integrating climate considerations in investment decision-making processes and demonstrates that 

advanced predictive models can enhance the strategic planning and risk management of renewable energy 

assets. While based on a localized case study, our findings contribute to the broader discourse on sustainable 

investment and underscore the critical role of renewable energy in mitigating climate change impacts. 

Introduction 
The escalating concerns over climate change and its multifaceted impacts on economic and financial systems 

have spurred extensive research into the performance of various assets under different climate scenarios. As 

global temperatures rise and weather patterns become increasingly erratic, the financial viability of assets, 

particularly those in the energy sector, face heightened uncertainty. This research aims to explore the 

intersection of climate effects and asset performance, focusing explicitly on the performance of a French solar 

farm in relation to changes in French energy prices. This research paper quantifies this particular asset’s 

sensitivity to electricity price fluctuations. 

The literature on climate change and financial performance is vast and diverse, encompassing studies on the 

macroeconomic impacts of climate variability, sector-specific analyses, and the development of predictive models 

to forecast financial outcomes under different climate conditions. Previous research has established that climate 

change can significantly affect asset values, operational costs, and revenue streams, necessitating the 

incorporation of climate risk into financial decision-making processes. 

Numerous studies have examined the broader economic implications of climate change. For instance, a joint study 

from the University of Buffalo and Purdue University concluded that mean dew point temperature and extreme 

maximum temperatures are among the key climate variables relevant to energy price prediction models—namely, 

they concluded that the mean dew point temperature was one of the most accurate predictor of increased electricity 

demand (Alipour, Mukherjee, & Nateghi, 2019). Additionally, Burke, Hsiang, and Miguel (2015) highlighted the 

potential for climate change to reduce global economic output by up to 23% by the end of the century. Similarly, the 

work of Dietz et al. (2016) underscored the importance of integrating climate risks into economic models to better 

understand their long-term impacts on growth and productivity. Also, Bressan et al. (2024) provided a model that 

quantifies physical risks on geolocalized productive assets, considering their exposure to chronic and acute impacts 

(hurricanes) across the scenarios of the Intergovernmental Panel on Climate Change, and which shows that 

investor losses are underestimated up to 70% when neglecting asset-level information and up to 82% when 

neglecting tail acute risks. Robert Lee et al. (2023) in their paper “Climate risk assessment and scenario analysis” 

reveal how Bayesian network tool is used in n scenario analysis and complex risk analysis aka CRisALIS approach. 

While there is some indication that physical risks are priced in credit and equity markets, the evidence is preliminary 

and sometimes mixed. In credit markets, investors seem to pay a premium for corporate bonds that tend to do better 

when bad news about climate arrives (Huynh and Xia [2020]). 

In the context of renewable energy, several studies have focused on the performance of solar farms and their 

economic viability. A study by Branker, Pathak, and Pearce (2011) provided a comprehensive review of solar 

photovoltaic (PV) levelized cost of electricity (LCOE), emphasizing the sensitivity of solar farm economics to 

climatic conditions and technological advancements. More recently, Hirth (2013) explored the market value of 

solar power, noting the significant influence of electricity prices and market dynamics on the profitability of solar 

energy projects. 



MILLIMAN WHITE PAPER 

Temperature-related impacts on solar assets 4 October 2024 

The use of a GAM in this article is supported by many studies that have shown this model to be apt for capturing 

seasonality and nonlinear relationships and interaction terms. Yee, T. W., & Mitchell, N. D. (1991) in their article 

"Generalized Additive Models in plant ecology" reveal how applying GAM was useful in predicting the distribution 

of an endangered plant species based on non-linear relationships with climate variables and capturing the non-

linear effect of elevation on the presence of a particular tree species using smooth functions in a GAM. In 

addition, Hastie & Tibshirani (1986) showed how GAMs provide a flexible method for identifying nonlinear 

covariate effects in exponential family models and other likelihood-based regression models. 

However, there remains a gap in the literature regarding the application of advanced predictive models to assess 

the performance of renewable energy assets, such as solar farms, in the context of climate-induced variability in 

electricity prices. Solar farms have emerged as a pivotal component of the global transition toward sustainable 

energy. Their performance, however, is intrinsically linked to climatic factors such as solar radiance, temperature, 

and weather patterns, which directly influence electricity generation and, consequently, revenue. Additionally, 

electricity prices, which are subject to market dynamics and regulatory policies, play a crucial role in determining 

the financial returns of solar farms. An understanding of these complex interdependencies is essential for 

investors, policymakers, and stakeholders aiming to optimize investment strategies and mitigate risks associated 

with renewable energy projects. 

This research paper seeks to address the gap in understanding European (specifically French) energy prices and 

solar farm production and performance by employing two sophisticated predictive models: the internal rate of 

return (IRR) and generalized additive models (GAM). The IRR model is a well-established financial metric used to 

evaluate the profitability of investments, providing a clear measure of expected return rates. As an accompanying 

predictive model, the GAM offers a flexible approach to capture the non-linear relationships between French 

climate variables and regional electricity prices, allowing for a more nuanced analysis of the factors influencing 

solar farm performance in France. It is important to note that our research is very regionally focused and is not 

necessarily extendable to other locations. For example, there are cultural and economic factors present in France 

that may not be applicable in other locations.  

By integrating these models, we aim to provide a comprehensive assessment of the financial viability of solar 

farms under varying climate conditions in France and electricity price scenarios. This dual-model approach not 

only enhances the predictive accuracy within the French climate context but also offers valuable insights into the 

potential risks and opportunities associated with renewable energy investments in this region. Our case study 

and its findings contribute to the broader discourse on sustainable finance and underscore the critical importance 

of incorporating climate considerations into financial models and investment strategies. It also underscores the 

importance of looking at climate models and related asset performance on a very localized basis, as findings are 

difficult to generalize.  

In the following sections, we will discuss data preparation and preprocessing, outline the methodology employed 

in our analysis, present the results of our predictive models, and discuss the implications of our findings for 

investors and policymakers. Through this research, we aim to advance the understanding of climate-related 

financial risks and support the development of more resilient and sustainable investment frameworks. 
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Data preparation and preprocessing 
1. Data description 

This section includes a brief description of the data set used in the numerical analysis in the subsequent sections. 

Data on electricity prices and climate variables are collected from reliable sources such as meteorological 

databases and energy market reports. The data is then preprocessed to handle missing values and outliers, and 

to ensure consistency in time intervals. The data set comprises a set of electricity prices from Bordeaux that was 

merged with a climate factor data set that includes temperature, dew temperature, solar radiation, cloud cover, 

precipitation probability, precipitation, and the time. These two data sets from the different sources were merged 

using common timestamps given in the two data sets. Alignment was ensured by checking for consistency in the 

feature definitions and units across the data sets. Both the electricity prices and the climate variables were all 

given in hours. The data was collected from Visual Crossing’s Historical Weather Data, the European Investment 

Bank, and from Statista regarding the historical wholesale price of electricity in France by the MWh, over the 

period from January 2015 to June 2024.  

The dataset from Visual Crossing comprises 83,136 records with seven features from climate factors and 83,136 

records with one feature that is the electricity prices. Each feature is described in Figure 3, including its type. 

FIGURE 3. DATA FEATURES 

VARIABLE NAME DESCRIPTION DATA TYPE RANGE 

 Price The wholesale electricity prices of a MWh in euros per hour. Numeric (-134.94,2987.78) 

Temperature The degree Celsius of Temperature per hour.  Numeric (-7.8,40.1) 

Solar radiation 
The amount of solar radiation in watts per meter squared per 

each hour. 
Numeric (0,1176) 

Dew 
The number of degrees in Celsius at which dew point is reached 

per each hour. 
Numeric (-29.8,22.8) 

Cloud cover 
The amount of cloud cover per each hour of the day as a 

percentage of coverage times 100. 
Numeric (0,100) 

Precipitation 

probability 

The chances of precipitation in each hour in a day. With 0 

meaning no precipitation and 100 indicating precipitation. 
Categorical 0 or 100.  

Snow depth The amount of snow depth in CM in each hour. Numeric (0,16) 

Precipitation The amount of precipitation in CM in each hour. Numeric (0,45.69) 

2. Data cleaning and transformation 

Figure 4 shows the energy price against the date from 2015 to 2024 for the complete data set. Energy price 

increases extremely after October 2021, reaching a maximum amount per MWh of about €3,000 per hour, and as 

can been seen in Figure 4, starting in October of 2021 the trend continued into 2024. This could be due to the 

tension and subsequent war between Ukraine and Russia as well as due to electricity demand changes due to a 

change in consumer habits during COVID lockdowns. To ensure that these extreme values do not alter the 

performance of the model, we consider only data collected from 2015 to June 2021. Similarly, we filtered out all 

energy prices that were either below €0 or over €200 per day from 2015 to June 2021 to standardize the data set, 

as there were unusual and high energy prices recorded from October 2016 to February 2017. The total data 

cohort size after cleaning was 56,626 discrete data points, out of which 34,904 discrete data points were used as 

training data while 21,722 discrete data points were used as testing data. The training data are the records 

obtained from 2015 to 2018, whereas the testing data are the data obtained from 2019 to June 2021. Figure 5 

shows the plot of energy price against date from 2015 to 2021 for the cleaned data.  

An additional feature, hour, was generated from the date-time variable to determine if electricity price could vary 

by the time of the day. This feature was created by taking a numeric value of 0 representing 12 a.m. in a day and 

23 representing 11 p.m. Precipitation probability was encoded as a factor variable since it populates as only two 

possible values: 0 or 100.  
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FIGURE 4. PLOT OF ELECTRICITY PRICE AGAINST DATE FOR THE UNCLEANED DATA 

 

FIGURE 5. PLOT OF ELECTRICITY PRICE AGAINST DATE FOR THE CLEANED DATA 
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Exploratory data analysis 

FIGURE 6. TEMPERATURE VERSUS DATE 

 

FIGURE 7. SOLAR RADIATION VERSUS DAY 
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FIGURE 8. ELECTRICITY PRICE VERSUS HOUR OF DAY 

 

FIGURE 9. ELECTRICITY PRICE VERSUS TEMPERATURE 
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FIGURE 10. ELECTRICITY PRICE VERSUS SOLAR RADIATION 

 

FIGURE 11. ELECTRICITY PRICE VERSUS CLOUD COVER 
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FIGURE 12. ELECTRICITY PRICE VERSUS PRECIPITATION PROBABILITY 

 

FIGURE 13. ELECTRICITY PRICE VERSUS PRECIPITATION 
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FIGURE 14. ELECTRICITY PRICE VERSUS DEW 

 

FIGURE 15. ELECTRICITY PRICE VERSUS SNOW DEPTH 
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Methodology 
GENERALIZED ADDITIVE MODEL  

Overview of GAM 

Generalized additive models (GAMs) are a flexible extension of generalized linear models (GLMs) that allow for 

the inclusion of non-linear relationships between the dependent variable and independent variables. GAMs 

achieve this flexibility by using smooth functions to model the non-linear relationships to capture complex and 

seasonal patterns in the data that linear models might miss. 

Model specification 

In this research, the dependent variable is the electricity price, while the independent variables include various 

climate factors such as solar irradiance, temperature, and weather patterns. The GAM can be specified as 

follows: 

𝑔(𝐸(𝑌))=𝛽𝑂 + 𝑠(𝑇) + 𝑓(𝑋) 

where 𝑔(. ) is the link function, E(Y) is the expected value of the response variable electricity price, 𝛽𝑂 is the 

intercept parameter, 𝑓(𝑋) =  ∑ 𝛽𝑖 . 𝑋𝑖
𝑝
𝑖  measures the systematic component where 𝛽𝑖 (𝑖 = 1, 2, … , 𝑝) is the 

regression coefficient or parameter associated with the i-th covariate (climatic variable) of size 𝑝, and  𝑠(𝑇) =

 ∑ 𝜃𝑗 . 𝐵𝑗(𝑇)
𝑞
𝑗 , 𝑗 = 1, 2, . . , 𝑞, is a smooth term or function to capture the seasonal and non-linear patterns of the 𝑗 −

𝑡ℎ time periodic depend variable, where 𝐵𝑗(𝑇) 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑢𝑏𝑖𝑐 𝐵 − 𝑠𝑝𝑙𝑖𝑛𝑒𝑠 𝑏𝑎𝑠𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠, and 𝜃𝑗 are the 

corresponding coefficients to be estimated.  

For purposes of demonstration, we assumed electricity price to follow a normal distribution and model the 

relationship between electricity price and the set of predictors based on a linear identity link function. However, 

we consider the cyclic cubic regression spline basis to capture the non-linear and seasonal effects in energy 

price over time.  

To construct cyclic cubic splines, we consider a combination of cubic B-splines and additional constraints to 

ensure periodicity. 

1. Cubic B-splines: These are piecewise polynomials of degree 3. For a set of knots, the cubic B-spline 

basis functions 𝐵𝑗(𝑇) are defined such that each 𝐵𝑗(𝑇) is non-zero only over a limited range of 𝑇. 

2. Periodicity constraints: To ensure the spline is cyclic, we impose constraints such that the spline and 

its first and second derivatives match at the boundaries 𝑎 and 𝑏 

𝑓(𝑎) = 𝑓(𝑏), 𝑓′(𝑎) =  𝑓′(𝑏), 𝑓′′(𝑎) =  𝑓′′(𝑏). 

To fit the GAM with cyclic cubic splines, we typically use penalized likelihood to control the smoothness of the 

spline. To derive the penalized likelihood function, we consider the distribution of the response variable to follow 

a Gaussian distribution with an identity link function, thus, we have: 𝑌~𝑁(𝜇𝑖,   𝜎2 ), where 𝜎2is the variance of the 

Gaussian distribution. 
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Likelihood function 

Given that the linear predictor 𝜂𝑖 =  𝜇𝑖 =  𝛽𝑂 + 𝑠(𝑇) + 𝑓(𝑋), the log-likelihood function becomes: 

𝑙(𝜃, 𝛽, 𝜎2) =  ∑ (−
1

2
log(2𝜋𝜎2) −

(𝑦𝑖 − (𝛽𝑂 +  𝑠(𝑇) +  𝑓(𝑋)))2

2𝜎2

𝑛

𝑖
 

To estimate the smooth functions, 𝑠(𝑇), we use a penalized log-likelihood to control the smoothness. The 

penalized log-likelihood function is expressed as: 

𝑙𝑝(𝜃, 𝛽, 𝜎2) =  𝑙(𝜃, 𝛽, 𝜎2) − ∑ 𝜆𝑗 . ∫( 𝑠𝑗
′′(𝑡)

𝑞

𝑗
)2𝑑𝑡,   

where 𝜆𝑗 are the smoothing parameters that control the trade-off between fit and smoothness, and ∫( 𝑠𝑗
′′(𝑡))2𝑑𝑡 is 

the roughness penalty for the smoothness function of 𝑠(𝑇). We obtain the basis dimensions based on a random 

search approach, whiles the smoothing parameter (λ) is obtained using grid search cross-validation. Expanding 

the log-likelihood function:  

𝑙(𝜃, 𝛽, 𝜎2) =  −
𝑛

2
log(2𝜋𝜎2) −

1

2𝜎2
(𝑦𝑖 − (𝛽𝑂 + ∑ 𝜃𝑗 . 𝐵𝑗(𝑇)

𝑞

𝑗
+ ∑ 𝛽𝑖 . 𝑋𝑖

𝑝

𝑖
))2  

Including the penalty term: 

𝑙(𝜃, 𝛽, 𝜎2) =  −
𝑛

2
log(2𝜋𝜎2) −

1

2𝜎2
(𝑦𝑖 − (𝛽𝑂 + ∑ 𝜃𝑗 . 𝐵𝑗(𝑇)

𝑞

𝑗
+ ∑ 𝛽𝑖 . 𝑋𝑖

𝑝

𝑖
))2 −  ∑ 𝜆𝑗 . ∫( 𝑠𝑗

′′(𝑡)
𝑞

𝑗
)2𝑑𝑡 

To estimate the parameters 𝛽, the smooth functions 𝜃, and the variance 𝜎2, we maximize the penalized log-

likelihood function. This is done using iterative algorithms like the backfitting algorithm or penalized iteratively 

reweighted least squares (P-IRLS). 

MODEL FITTING 

To fit the GAM, we made used of the R software package "mgcv," which is readily available in R. Figure 3.1 

reports the results of the estimated coefficients, standard errors, t-values, and the p-values for the GAM based on 

the set of predictors. Based on the small p-values associated with each predictor, we can conclude that all the 

climatic variables are statistically significant at less than a 0.01 significance level. This means that there is strong 

evidence to suggest that climatic conditions such as temperature, solar radiation, dew temperature, cloud cover, 

and precipitation probability have meaningful association with energy costs and that this association is unlikely to 

be due to random chance. The p-value corresponding to snow depth was greater than 0.05, suggesting a non-

statistical significance relationship between energy price and snow depth. Snow depth was therefore removed 

from the model.  

By substituting the estimated coefficients, the GAM can be expressed as follows:  

Expected Electricity Price ≈ 50.035+ 𝑠(𝐷𝑎𝑡𝑒) + 𝑠(𝐻𝑜𝑢𝑟) - 0.283. 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 - 0.010. 𝑆𝑜𝑙𝑎𝑟 𝑅𝑎𝑑- 0.148. 𝐷𝑒𝑤 - 

0.007. 𝐶𝑙𝑜𝑢𝑑 𝑐𝑜𝑣𝑒𝑟 - 1.364. 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 

FIGURE 16. APPROXIMATE SIGNIFICANCE OF THE SMOOTH TERM. 

CLIMATIC VARIABLE 
COEFFICIENT 

ESTIMATE 
STD. ERROR T-VALUE P-VALUE 

INTERCEPT TERM 50.035 0.256 195.56 2X10-16 

TEMPERATURE -0.283 0.023 -12.10 2X10-16 

SOLAR RAD -0.010 0.001 -18.17 2X10-16 

DEW -0.148 0.025 -6.01 2X10-09 

CLOUD COVER -0.007 0.002 -4.50 2X10-06 

PRECIPITATION PROBABILITY -1.364 0.163 -8.35 2X10-16 
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FIGURE 17. APPROXIMATE SIGNIFICANCE OF THE SMOOTH TERM. 

SMOOTH TERM EFFECTIVE DF REF. DF F-STATISTIC P-VALUE 

DATE 117.95 118 492.2 2X10-16 

HOUR OF DAY 19.83 22 765.8 2X10-16 

Interpretation of model coefficients  

 β_0 = 50.03: The baseline value of energy price when all other variables are zero.  

 β_1 = 0.28: For each unit increase in temperature, the price decreases by approximately 0.28 units, holding 

all other variables fixed. All climate factors and supply factors held constant the region seemingly 

experiences higher demand for electricity when temperatures go down. The demand explanation is that the 

region experiences a greater demand shock (whereby demand increases at a higher rate than the supply 

can be shocked by without an increase in prices) during the winter since there is a considerable rate of use 

of electrical heaters. The region does not experience as great of a demand shock during the summer, as the 

region does not use as much energy to cool itself as it does to heat itself. This hypothesis is borne out by the 

evidence that roughly 39% of homes in France have electrical heaters (Vollmuth & Pellinger). This demand-

side explanation expects that there is not a considerable rate of use of air conditioners compared to heating 

units in France, and this is borne out by evidence. Only ~25% of French households have air conditioning, 

this data point stands in contrast to the United States, where roughly 90% of homes have air conditioning 

(Pauline, 2024), (Ross & Bill, 2024).   

 β_2 = 0.01: For each unit increase in solar radiation, the price decreases by approximately 0.01 units, 

holding all other variables fixed. This is likely due to an increased amount of electricity supplied from solar 

arrays. As solar radiation increases, likewise, the amount of electricity supplied to the grid increases.  

 β_3 = 0.15: For each unit increase in dew point, the price decreases by approximately 0.15 units, holding 

other variables fixed. Dew temperature should have a directional relationship with temperature. As 

temperature increases then usually so does dew temperature. Therefore, the same reasons that an increase 

in temperature relates to a decrease in price can be thought to apply to dew temperature.  

 β_4 = 0.007: For each unit increase in cloud cover, the price decreases by approximately 0.007 units, 

holding other variables fixed. There is a decrease of supply that is most likely due to a decrease in solar 

array productivity during a period of increased cloud cover. In 2023, 15% of France’s electricity production 

came from solar power (Electricity Transmission Network, 2024).    

 β_5 = 1.36: The price decreases by approximately 1.36 units (36%) when there is 100% probability of 

precipitation as compared to when there 0% probability of precipitation, holding all other variables constant. 

If supplied electricity remains roughly constant regardless of the probability of precipitation, then it seems 

that precipitation has an impact on demand. When rain is occurring then the demand of electricity goes 

down. This causes the price of electricity to decrease, all other factors held constant.  

MODEL VALIDATION AND DIAGNOSTICS 

The fitted GAM is validated using a testing data set to assess its predictive accuracy. Performance metrics such 

as the R-square adjusted, the proportion of deviance explained, and the root mean squared error (RMSE) are 

used to evaluate the model. Figure 18 is a graph of the line of best fit on the train data. Observe that the fitted line 

approximately captures the seasonal patterns in the training data. Similarly, Figure 19 shows the corresponding 

line of best fit on the testing data. The line of best fit approximately captures the seasonal patterns in the testing 

data, indicating the superiority of the GAM to capture both linear and non-linear patterns in data. 
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FIGURE 18. PLOT OF THE BEST FIT LINE FOR THE TRAINING DATA  

 

FIGURE 19. PLOT OF THE BEST FIT LINE FOR THE TESTING DATA  

 

As a parametric distribution, the GAM assumes that the residuals are normality distributed with a constant 

variance. Figures 20 and 21 are used to check the normality of the residuals. The Q-Q plot indicates a systematic 

deviation from the line in later values, which may be due to the many outliers recorded in the recent observations. 

For future studies, we may recommend using lighter tail distributions than the normal distribution considered in 

this study. 
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To check for non-linearity and heteroscedasticity, we presented a plot of residuals against the predictors in 

Figure 23. The plot shows a systematic pattern, funnel shape, where the spread of residuals increases with 

fitted/predictor values and indicates heteroscedasticity (non-constant variance). This indicates that the smooth 

term may not have captured the relationship adequately, suggesting the need for a more flexible smooth term. 

The test for the significance of the smooth terms in the model are statistically significant at 5% alpha level. 

This clearly shows that date and hour of day both have significant non-linear relationship with electricity prices. 

However, observe that increasing the smooth term or the flexibility comes at cost for computational efficiency 

and overfitting. Figure 22 suggests that the GAM with cyclic basis function captures the underlying structure of 

the data well since the points lie approximately on a 45-degree diagonal line where the response equals the 

fitted values. 

FIGURE 20. HISTOGRAM OF THE RESIDUALS FROM THE TRAINING DATA 

 

FIGURE 21. Q-Q PLOT FOR THE TEST OF NORMALITY OF THE DEVIANCE RESIDUALS 
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FIGURE 22. Q-Q PLOT FOR THE TEST OF NORMALITY OF THE DEVIANCE RESIDUALS 

 

FIGURE 23. PLOT OF THE RESIDUALS AGAINST THE LINEAR PREDICTORS 
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MODEL PERFORMANCE 

 R-sq.(adj) = 0.712: This means that approximately 71.2% of the variability in price is explained by the model. 

This is a good fit. 

 Deviance explained = 71.3%: Like R-squared, this indicates how well the model explains the data. 

 RMSE: The RMSE on the training data is 9.60, while the testing RMSE data is 17.20. The high RMSE is 

highly attributed to the many extremely large outliers recorded in the data. 

In summary, this GAM is used to predict the price based on several factors, including time-related variables 

(date and hour of day), and weather-related variables (temperature, solar radiation, dew, cloud cover, 

and precipitation probability). The model captures both linear and non-linear relationships, explaining a significant 

portion of the variability in the electricity price. The results show that all the included variables significantly impact 

the price, with the model fitting the data quite well. 

CONSTRUCTING THE CASH-FLOW MODEL USING IRR 

1. Predictive electricity prices from GAM: The validated GAM provides predictive values of electricity prices 

based on the following climate variables. These predicted electricity prices are crucial inputs for the cash 

flow model of the solar farm. 

2. Cash-flow model components/assumptions of the cash-flow inputs: The cash-flow model includes 

several components: 

− Revenue: Calculated based on the predicted electricity prices and the expected electricity generation 

from the solar farm 

− Operating costs: Includes maintenance, labor, and other operational expenses 

− Capital expenditures: Initial investment required to set up the solar farm 

− Depreciation: Accounting for the wear and tear of the solar farm equipment over time 

− Tax considerations: Including potential tax benefits and liabilities 

3. Revenue calculation: Revenue is calculated using the formula: 

Revenue = Sum of all the predicted hourly electricity price in each month  

where the predicted electricity price is obtained from the GAM. 

4. Cash-flow projection: The cash flow for each month is projected by subtracting the operating costs and 

other expenses from the revenue at the end of each month. The net cash flow for each month is given by: 

Net cash flow = Revenue − Operating costs − Other expenses 

5. IRR calculation: The IRR is calculated using the projected cash flows. IRR is the discount rate that makes 

the net present value (NPV) of the cash flows equal to zero. It is computed using the formula: 

NPV=∑
𝑁𝑒𝑡 𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝑡

(1+𝐼𝑅𝑅)𝑡
𝑇
𝑡=0 =0 

where t is the time period, and T is the total number of periods. 

6. Sensitivity analysis: A sensitivity analysis is conducted to understand how changes in key assumptions, 

operating cost, and other assumptions affect the IRR. This analysis helps in identifying the most critical 

factors influencing the financial performance of the solar farm. 

7. Model inputs and variables: See Figure 2 in the abstract for more details about how the values presented 

below are used to calculate a net monthly cashflow for the asset. 
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FIGURE 24. CASH-FLOW MODEL ASSUMPTIONS 

Model start date 12/31/2014 

Cost to develop asset  € 352,080,000  

Temperature increases during scenario analysis Variable (+0 ℃, +.5 ℃, +1 ℃) 

Efficiency Variable (11.35%, 16%, 17%, 18%, 19%, 20%, 21%, 22%) 

Solar depreciation factor 0.25% 

Investment horizon  35 Yrs. 

 

FIGURE 25. CASH-FLOW MODEL FEES 

Additional considerations: 

1. Taxes - All results are provided on a pre-tax basis.  

2. Purchased – All solar panels at the farm are modeled as purchased and not leased. Therefore, no ongoing 

lease rate was modeled. 

3. Solar panel replacement rate – The solar panels are modeled with a 0% replacement rate.  

4. Solar panel efficiency depreciation rate – The solar panels are modeled with a 0.25% annual depreciation 

rate.  

INTEGRATION AND ANALYSIS 

Comparative analysis: The IRR values from different scenarios are compared to assess the robustness of the 

solar farm's financial performance under varying climate conditions. This comparative analysis provides insights 

into the potential risks and opportunities associated with the investment. 

  

Monthly Maintenance Fee 1% of monthly Gross Cashflow 

Management Fee 2% of monthly Cashflow net of Maintenance 
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Key findings 

FIGURE 26. IRR NET OF ASSUMED 1% FEES MONTHLY AND A 2% MANAGEMENT FEE WITH 35-YEAR INVESTMENT HORIZON USING 

PROJECTED AND HISTORICAL WHOLESALE PRICE PER MWH IN EUROS 
  

Scenario 1: With 

Historical Wholesale 

Price and Projected 

Temp +0 degree Celsius 

Increase 

Scenario 2: With 

Historical Wholesale 

Price and Projected 

Temp +.5 degree Celsius 

Increase 

Scenario 3: With 

Historical Wholesale 

Price and Projected 

Temp +1 degree Celsius 

Increase 

Scenario 4: With 

Historical Wholesale 

Price and Projected 

Temp +1 degree Celsius 

Increase, Projected Dew 

Temp +1 degree Celsius 

Increase, and Projected 

Cloud Cover reduction of 

15% 
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11.35% 4.26% 4.25% 4.23% 4.22% 

16% 7.47% 7.46% 7.45% 7.44% 

17% 8.12% 8.11% 8.10% 8.09% 

18% 8.76% 8.75% 8.74% 8.73% 

19% 9.39% 9.38% 9.36% 9.35% 

20% 10.00% 9.99% 9.98% 9.97% 

21% 10.61% 10.60% 10.59% 10.58% 

22% 11.21% 11.20% 11.19% 11.18% 

 

FIGURE 27. COMPARISON OF A DOLLAR VALUE OF A BASIS POINT (DV01) AND A SENSATIVITY VALUE OF A BASIS POINT (SV01) 

BETWEEN SCENARIOS 1 AND 3  
  

DV01  

(Scenario 1 - Scenario 3) 

SV01  

(Scenario 1 - Scenario 3) 
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11.35% € 2,378,689 0.024% 

16% € 3,353,414 0.023% 

17% € 3,563,002 0.023% 

18% € 3,772,591 0.023% 

19% € 3,982,179 0.023% 

20% € 4,191,767 0.022% 

21% € 4,401,356 0.022% 

22% € 4,610,944 0.022% 
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FIGURE 28. TOTAL CASH FLOW NET OF ASSET DEVELOPMENT COST AND FEES IN EUROS OVER A 35-YEAR TIME HORIZON 
  

Scenario 1: With Historical 

Wholesale Price and Projected 

Temp +0 degree Celsius Increase 

Scenario 2: With Historical 

Wholesale Price and Projected 

Temp +.5 degree Celsius Increase 

Scenario 3: With Historical 

Wholesale Price and Projected 

Temp +1 degree Celsius Increase 

A
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11.35% € 287,424,216 € 286,234,872 € 285,045,527 

16% € 549,476,386 € 547,799,679 € 546,122,972 

17% € 605,823,660 € 604,042,159 € 602,260,658 

18% € 662,170,934 € 660,284,639 € 658,398,343 

19% € 718,518,208 € 716,527,119 € 714,536,029 

20% € 774,865,482 € 772,769,599 € 770,673,715 

21% € 831,212,756 € 829,012,078 € 826,811,401 

22% € 887,560,030 € 885,254,558 € 882,949,086 

 

Solar panels used at solar farms have increased in efficiency over time. While this research team found that the 

solar farm modeled has an efficiency of roughly 11.35%, we analyzed greater efficiencies to determine the 

materiality of this variable on the asset’s performance over the 35-year investment horizon at an efficiency more 

representative of solar arrays produced today (see rows 2-8 in Figure 28). In conclusion of this section there are 

two points of note. First, when running our scenario analysis, the historical average (Jan 2015 to June 2024) 

temperature (the temp variable) at a given hour at a given day during the year was applied as the temperature 

value for the annual projected electricity prices; it is possible that another team could derive more accurate 

projected temperature values, but this is beyond the scope of this paper. Likewise, the average MWh per meter 

squared (or the solarrad variable) over the period of January 2015 to June of 2024 at a given hour at a given day 

during the year was applied as the solarrad value for the annual projected electricity price; for the variables 

cloudcover, precipprob, precip, and dew point temperature or (dew), 2023 values were used for projecting 

electricity prices. Again, we imagine that other teams may use different methods to derive projection values for 

these climate variables. Second, several additional model runs were performed in order to observe the GAM’s 

predicted impact on IRR in a case where several climate variables experienced changes. This would be an 

enhancement to the scenarios run in the figures above since in scenarios 1 to 3 only experienced an air 

temperature shock. We noted a de minimis impact when stressing the projected cash flows using multiple climate 

variables. For example, the gap in IRR between scenario 3 noted above in Figure 26 and scenario 4 is ~1 basis 

point, where in addition to a temperature variable stress of one degree Celsius, we applied an increase to the 

dew variable at each hour of one degree Celsius as well as a 15% cloud cover reduction at each hour.  

RESULTS 

The cash-flow model indicates that the impact of future temperature change on solar array assets is not material. 

At worst ~-0.024% and at best ~-0.022% performance reductions would have occurred in terms of IRR due to an 

increase in temperatures of 1℃ from day one of the projection period which was July 2024 until the end of the 

projection in November 2049. Factors much more relevant than temperature to the performance of this asset 

include the solar efficiency of the solar system used, the investment horizon used to model the assets 

performance, and the fee assumptions applied to the projected asset performance. 
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LIMITATIONS 

There are three key limitations to the analysis.  

1. Regarding the GAM, the dataset used to create this model was of limited relevance to the French 

wholesale energy market. The weather variables we observed did not directly relate to the energy 

market; however, the limited data provided was statistically significant (for setting an electricity price) 

and allowed our team to produce a GAM with an acceptable goodness of fit based on historical 

electricity prices. It was a sufficient data set for our purposes. We could imagine that a team with access 

to the electricity demand or supply sourced from a government authority, or with access to much more 

detailed information about the specific solar park’s energy output, would be capable of producing a more 

apt GAM. 

2. Electricity prices in France are based on demand, and the research must be considered with this 

relationship in mind and may not be extendible to areas where demand pricing is not done.  

3. The research would be more robust and the IRR cash-flow model more refined if the research team had 

access to data on the solar array efficiency at energy production start date, the full land leasing 

agreement, the solar array efficiency depreciation year over year, and specific maintenance fee 

schedule for the solar array we were modeling.    
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