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Effects of climate change are increasingly noticeable, and notably impacts on 

economic activity. Economic scenarios representing the future possible states of 

economies are at the core of the regulatory calculations performed by insurance 

companies. This paper presents and discusses several methodologies that can be 

employed to integrate the climate risk into the derivation of future scenarios of 

corporate spreads and probabilities of defaults.  

Benchmark method 
The first approach we discuss is the method described by the 

Banque de France in its working paper (see CRSFSA in 

References). In this paper, this method is called the 

“benchmark” one. In the rest of the document, the method is 

adapted to the current framework of the present study.  

The event of bankruptcy is described by a random variable 𝐷 

that can take two values: 1 in case of default, 0 otherwise. 𝐷 is 

thus described by a Bernoulli distribution of parameter 𝑝 to be 

determined. The particularity of the method lies in the fact that 

this Bernoulli distribution is a conditional distribution. Namely, 

the parameter 𝑝 defining the distribution expresses as a 

function of a vector state variable �̃�1: 

ℙ(D = 1|X̃) = 1 − p(X̃), ℙ(D = 0|X̃) = p(X̃). 

To estimate the function 𝑝, a logistic regression is performed:  

1 − p(X̃) =
1

1 + exp(β0 + β1̃ ⋅ X̃)
. 

To illustrate this approach, a regression has been made using 

the historical dataset of probabilities of default coming from the 

annual study of Standard & Poors Global (S&P Global). See 

SP2023 in References.  

The state process we have chosen is composed of the three 

following macroeconomic variables that are the evolutions of 

the French gross domestic product (GDP), the price of oil and 

the S&P500 index: �̃� = (ΔGDP, ΔOil, ΔS&P). The regression is 

displayed in Figure 1 and is fairly satisfactory: the 𝑅𝟐 is of 

36.5%; the global significance of the model is of 0.056%; the 

respective significance of each coefficient is 0.074, 0.34, 0.011. 

In particular, the variations of oil prices are not statistically 

significant in the present experiment.  

 
1. Symbol     ̃refers to multidimensional quantities (vectors). 

FIGURE 1: LOGISTIC REGRESSION OF HISTORICAL PROBABILITIES OF 

DEFAULTS USING THE “BENCHMARK” METHOD 

 

To further develop the integration of climate risk in corporate 

bonds, we investigate in the remaining part of this paper two 

processes that have additional abilities compared to the 

benchmark methodology. Both approaches rely on structural 

modelling of the company that consider in a single framework 

the modelling of corporate debt and equity. The first method is 

a statistical procedure that allows us to model the transition of 

credit ratings and their associated probabilities in addition to 

the probabilities of defaults. The second described approach 

allows us to consistently derive call option prices from 

corporate bonds, and vice versa. One of the main motivations 

to consider these approaches is the following: a number of 

climate stress tests have been proposed by several national 

regulators (mainly in Europe); they rely on scenarios of the 

future evolution of some economic quantities. It turns out that 

the implemented processes of the valuation of insurance 

undertakings do need a scenario on extra quantities, which are 

not included in these scenarios. Deriving consistent scenarios 

on implied volatilities from a given scenario on corporate bonds 

(as will be illustrated in this paper) is therefore of interest.  
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A real-world approach based on 

Merton-Vasicek modelling 
OVERVIEW OF THE MODEL 

Under this approach, we rely on a framework closer to the 

original Merton model. Specifically, we follow the Merton-

Vasicek model, which is a structural model assuming a 

Gaussian representation of the value of a company, allowing 

for a deduction of its loan credibility (credit rating, likelihood of 

default). In its original version (see Merton in References), the 

Merton model represents the asset value of a company using a 

lognormal process (as in the celebrated Black-Scholes model 

used for equity derivatives pricing) and models the event of 

default as being the moment when the value of the company 

falls below a threshold. This framework has the main 

advantage of providing closed-form formulas for several 

quantities of interest (probabilities of default, distance to 

default, equity derivatives etc.).  

The Merton-Vasicek extension of the model (see Vasicek in 

References) proposes to represent the asset value of the 

considered company by a random variable that is based on the 

sum of an idiosyncratic term and a systemic risk factor. It 

preserves the advantage of providing a number of analytical 

formulas, still taking advantage of the Gaussian property of the 

involved random variables.  

We base our framework of analysis on this particular 

framework. In addition, the model is extended to take into 

account the fact that the rating of the considered undertaking 

may vary through time: the asset values of the undertaking do 

also determine its credit rating, and not only its default. To this 

end, thresholds are calibrated so that they determine the rating 

of the company. The smallest calibrated threshold corresponds 

to the default threshold.  

In equation, let us consider a company 𝐶 whose credit rating is 

𝑅(𝑡) at time 𝑡 (typically, 𝑅(𝑡) takes values in 

{AAA, AA, A, BBB, BB, B, CCC}) and asset return at time 𝑡 is 

denoted by 𝑦𝐶(𝑡). The thresholds determining the current 

rating of the company are denoted by 𝑑𝑅: if 𝑦𝐶(𝑡) ∈ {𝑑𝑅−1, 𝑑𝑅}, 

then the company is rated 𝑅 − 1 at time 𝑡 (here 𝑅 − 1 denoted 

the credit rating just below 𝑅 in the increasing order); the 

extreme events determine when the company takes the best 

possible rating or when the company defaults. E.g., if 𝑦𝐶(𝑡) ∈

{𝑑BBB, 𝑑A}, then the company is rated BBB; if 𝑦𝐶(𝑡) ≥ 𝑑AAA, the 

company is rated AAA and if 𝑦𝐶(𝑡) ≤ 𝑑𝐶𝐶𝐶 , the company 

defaults (or has default) at time 𝑡. In particular, the default can 

be seen as being a particular rating, say 𝑅 = 𝐷. Because 𝑦𝐶(𝑡) 

is assumed to be a Gaussian 

variable, the probability of the transition of ratings from rating 𝑅 

i.e., assumed to be the initial rating, 𝑅(0) = 𝑅, to rating 𝑅′ 

expresses as:  

ℙ(R → R′ at time t) =  ℙ(R(t) = R′)

= ℙ(dR′ ≤ yC(t) ≤ dR′+1)

= Φ(dR′+1) − Φ(dR′) 

where Φ is the cumulative distribution function of the normal 

distribution.  

The process 𝑦𝐶 is defined as:  

yC(t) = √ρXt + √1 − Ρ ZT
C

 

where 𝑋𝑡 is a stochastic process representing the systemic 

macroeconomic risk, 𝑍𝑡
𝐶 is an idiosyncratic factor representing 

the specific risk and 𝜌 is a coefficient lying in ]0,1[ that is the 

correlation coefficient between asset return and systemic factor.  

For simplicity, 𝑍𝑡
𝐶 is assumed to be a Gaussian variable 

independent of any other source of risk (in particular, 𝑍𝑡
𝐶 and 

𝑍𝑠
𝐶 are independent for 𝑡 ≠ 𝑠). At time 𝑡, we can express the 

conditional transition probabilities as functions of the realisation 

of the systemic factor and the correlation coefficient:  

ℙ(R → R′ at time t |Xt) =  ℙ(R(t) = R′|Xt)

= ℙ(dR′ ≤ yC(t) ≤ dR′+1|Xt)

= ℙ(dR′ ≤ √ρXt + √1 − Ρ ZT
C ≤ dR′+1|Xt)

= Φ (
dR′+1 − √ρXt

√1 − ρ 
) − Φ (

dR′ − √ρXt

√1 − ρ 
)

=: f(R,R′)(Xt, ρ). 

The systemic risk factor is meant to represent the overall state 

of the economy. In the present work, we have performed a 

statistical analysis to determine the best variable for 

establishing a model for the evolution of the process 𝑋. We 

propose to write evolution of the systemic risk factor between 

two dates as 

Xt+1 = γ + (1 + α)Xt + β̃ ⋅ Yt+1
̃ + ν̃ ⋅ Yt̃ + ϵt+1, (E1) 

where 𝛼, 𝛾 are constant coefficients, �̃�, 𝜈 are multidimensional 

vectors of coefficients, 𝜖𝑡 is a Gaussian variable, independent 

of all other sources of risk and �̃� is a vector of variables 

representing the evolution of the macroeconomic variable; 

when projecting the state process 𝑋, the variable �̃� should be 

also be simulated and this can be done with the help of 

macroeconomic scenarios on future evolution of the economy.  
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CALIBRATION 

First, the thresholds 𝑑𝑅 can be estimated using a time series of 

observed transition of rating: an historical estimation, denoted 

�̂�𝑅→𝑅′, of the probabilities of going from a rating 𝑅 to a rating 𝑅′ 

can be constituted thanks to which the thresholds can be 

determined iteratively as:  

dR′ = Φ−1(Φ(dR′+1) − P̂R→R′). 

Subsequently, the correlation coefficient 𝜌 and the 

macroeconomic process 𝑋 need to be determined. The 

described calibration method is divided into two steps: first, we 

consider that the values taken by the state process 𝑋 are 

parameters, which will be calibrated simultaneously with the 

other model parameters; in a second step, the parameters that 

define this state process 𝑋 will themselves be calibrated, using 

the values obtained during the first step. Namely, say that on 

historical period (year, month etc.) 𝑡, the process 𝑋 took the 

value 𝑥𝑡. It has been observed on this period that a number 

𝑛𝑅,𝑅′(𝑡) of companies have been going from rating 𝑅 to rating 

𝑅′. The conditional (to the systemic factor) distribution of the 

random variables 𝑁𝑅,𝑅′ counting the number of transitions is 

modelled by a multinomial distribution: 

ℙ(NR,AAA = nR,AAA,t, … , NR,D = nR,D,t|Xt = xt)

=
nt!

nR,AAA,t! × … × nR,D,t!
 F(R,AAA)(XT, Ρ)nR,AAA,t  ×  … 

×  F(R,D)(XT, Ρ)nR,D,t 

where 𝑛𝑡 = 𝑛𝑅,𝐴𝐴𝐴,𝑡 + ⋯ + 𝑛𝑅,𝐷,𝑡 is the total number of observed 

events.  

By independence of the conditional transition distributions, and 

applying the Bayes formula, we can finally express the 

likelihood of the observed sample at period 𝑡 as  

ℙ(NR,AAA = nR,AAA,t, … , NR,D = nR,D,t, Xt = xt)

=
e−

xt
2

2

√2π
∏

nt!

nR,AAA,t! × … × nR,D,t!
 F(R,AAA)(XT, Ρ)nR,AAA,t  

R

× … ×  F(R,D)(XT, Ρ)nR,D,t . 

 

 
2. INSEE (31 May 2024). The Nation's Accounts in 2023. Retrieved 28 October 

2024 from https://www.insee.fr/fr/statistiques/8068582?sommaire=8068749. 

Numerically, to determine the values of 𝜌 and (𝑥𝑡)𝑡=1,..,𝑇, the 

log-likelihood of the sample is evaluated and minimised to 

determine the optimal values of correlation coefficient 𝜌 and 

systemic factor (𝑥𝑡)𝑡=1,..,𝑇: 

L(ρ, x1, … , xT) = −
T

2
log(2π) − ∑

xt
2

2

T

t=1

+ ∑ (∑ log (
nt!

nR,AAA,t! × … × nR,D,t!
)

R

T

t=1

+ ∑ ni,j,t log (F(R,R′)(ρ, xt))

R′

) . (EL) 

In a second time, we can calibrate the coefficients 𝛼, 𝛾, �̃� and 𝜈 

by performing a linear regression analysis and obtain 

coefficient estimations through least-squares minimisation. 

NUMERICAL EXPERIMENTS 

We have applied this statistical approach to two sets of data: a 

very global set of data representing the global economy and a 

very specific example of French agricultural data. Due to a lack 

of relevant historical data, we have applied the considered 

modelling framework to the case where there are only two 

ratings classes: default and non-default. In other words, the 

setting we illustrate focusses on default probabilities, and does 

not consider transition of rating. However, with proper data, it 

can be fully extended following the same methodology as 

described above.  

Global data 

To calibrate the model, we have used historical series of 

probabilities of defaults provided by S&P Global in SP2023 

(see references). After analysis, we have chosen to link the 

state process 𝑋 to to the French GDP (source: INSEE2). The 

historical time series we work with are annual between 1981 

and 2022; they gather the bankruptcy of the undertakings in 

seven different groups of ratings (AAA, AA, A, BBB, BB, B, CCC). 

The minimisation of the log-likelihood provides an estimation of 

the correlation coefficient 𝜌 = 0.1; however, this value is equal 

to the lower bound set in the minimisation algorithm (for 𝑋 to be 

significant in the formulas, we have set a nonzero lower bound 

during the minimisation routine). Observations of the latent 

process 𝑋 are displayed in Figure 2. 

https://www.insee.fr/fr/statistiques/8068582?sommaire=8068749
https://www.spglobal.com/ratings/en/research/articles/240328-default-transition-and-recovery-2023-annual-global-corporate-default-and-rating-transition-study-13047827
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FIGURE 2: STATE PROCESS 𝑿  

 

The calibrated values for the state process 𝑋 justify the choice 

of the regression model given in Equation (𝐸1) because a 

strong non-positive autocorrelation can be observed. In the 

present experiment, we have set 𝛾 = 0. Performing a least-

squares regression on the increments of the state process with 

the French GDP being the explanatory variable �̃� provides the 

following results: MSE = 0.86 and 𝑅2 = 42.46%. The p-values 

associated with the statistical tests of significance for the 

coefficients 𝛼 and �̃� (in this case, �̃� is a number, not a vector) 

are, respectively, 0.0% and 5.5%.  

FIGURE 3: LINEAR REGRESSION OF THE INCREMENTS OF THE STATE 

PROCESS WITH RESPECT TO FRENCH GDP 

 

Now that the model is calibrated, we can simulate it and project 

values of the probabilities of defaults. To do so, we need a 

scenario for the future evolution of the macroeconomic process 

�̃�. We have reused the projections of GDP established by the 

 
3. ACPR. Scenarios and Main Assumptions of the 2023 Climate Stress Test 

Exercise. Retrieved 28 October 2024 from https://acpr.banque-

france.fr/scenarios-et-hypotheses-principales-de-lexercice-de-stress-test-

climatique-2023. 

4. ACPR. Key Results of the Climate Exercise on the Insurance Sector. Retrieved 

28 October 2024 from https://acpr.banque-france.fr/les-principaux-resultats-de-

lexercice-climatique-sur-le-secteur-de-lassurance. 

French Prudential Supervision and Resolution Authority, the 

Autorité de contrôle prudentiel et de résolution (ACPR), in its 

second climate stress test3 (whose results were published in 

May 20244). In particular, we have selected the scenario 

“Delayed transition,” in which policies aiming to counter the 

effects of climate change are not immediately implemented. 

The starting values of the simulations of process 𝑋 is taken 

equal to its last observed values 𝑋2023; over the period of 

projection, it is assumed that the default threshold 𝑑𝐷 is 

constant and equal to its last observed value. We perform this 

simulation for the three worst ratings CCC, B and BB. As 

observed, the simulations provide an increasing profile for the 

probabilities of defaults as time passes.  

FIGURE 4: SIMULATION OF FUTURE DEFAULT PROBABILITIES  

 

French agricultural data 

The second example we give is based on more limited data. 

We investigate the default events of agriculture-related 

companies in France and link it to a very specific climate index. 

We have collected the historical series of companies having 

experienced a default over the past few years in France by 

sector of activities and have retained the one related to the 

agricultural sector (“Agriculture, forestry and fisheries”). Data 

come from Banque de France.5 Secondly, we have set up an 

approximated yearly series of the total number of companies 

operating in France for the 2001-2024 period. Taking the ratio 

of these quantities has allowed us to derive an approximated 

historical series of probabilities of default for agricultural 

companies in France for the 2001-2024 period.  

On those data, we proceed as above on the global data. We 

first extract the values of the state process 𝑋 by minimising the 

likelihood in Equation (𝐸𝐿).  

5. Banque de France (May 16, 2024). Business Failures Apr 2024. Retrieved 28 

October 2024 from https://www.banque-france.fr/fr/publications-et-

statistiques/statistiques/defaillances-dentreprises-avr-2024. 

https://acpr.banque-france.fr/scenarios-et-hypotheses-principales-de-lexercice-de-stress-test-climatique-2023
https://acpr.banque-france.fr/scenarios-et-hypotheses-principales-de-lexercice-de-stress-test-climatique-2023
https://acpr.banque-france.fr/scenarios-et-hypotheses-principales-de-lexercice-de-stress-test-climatique-2023
https://acpr.banque-france.fr/les-principaux-resultats-de-lexercice-climatique-sur-le-secteur-de-lassurance
https://acpr.banque-france.fr/les-principaux-resultats-de-lexercice-climatique-sur-le-secteur-de-lassurance
https://acpr.banque-france.fr/
https://www.banque-france.fr/fr/publications-et-statistiques/statistiques/defaillances-dentreprises-avr-2024
https://www.banque-france.fr/fr/publications-et-statistiques/statistiques/defaillances-dentreprises-avr-2024
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FIGURE 5: STATE PROCESS 𝑿  

 

For deriving a model on the evolution of the state process 

𝑋 = (𝑋𝑡)𝑡, we have chosen to work with the Soil Wetness Index 

(SWI), an index that takes values near (and even a little above) 

1 when the soil is wet, and near (or a little below) 0 when the 

soil is dry. The values of the SWI are collected from the Météo 

France database:6 they are given monthly and for 8,981 

meshes covering the metropolitan French territory. To perform 

the linear regression representing the state process 𝑋, we work 

with yearly average values of the SWI over the whole 8,981 

meshes. During the regression we thus have set 𝑌�̃� = 𝑆𝑊𝐼𝑡. 

The regression is displayed in Figure 6; the results are still 

quite satisfactory with 𝑅2 = 0.51 and MSE = 0.21. The p-values 

of significance tests for the coefficients 𝛼, �̃� and 𝜈 are, 

respectively, 0.005, 0.61 and 0.083. 

FIGURE 6: LINEAR REGRESSION OF THE STATE PROCESS WITH 

RESPECT TO SWI 

  

Again, now that the model is calibrated, simulations can be 

made. With the following experiment, we provide an example of 

the future evolution of probabilities of default on that sectorial 

example: we have set the default thresholds 𝑑𝐷 being equal to 

 
6. Meteo France Public Data. Monthly Soil Moisture Index Data for the CatNat 

Device. Retrieved 28 October 2024 from 

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=301&id_rub

rique=40. 

its last observed value again and build two scenarios of 

evolution of the SWI: the first one is seeing the SWI decreasing 

at 2.5% per year; in the second one, it is increasing at 2.5% per 

year.7 The simulated trends are consistent with intuition 

because, under the first scenario of an acceleration in the 

increase in drought, the probabilities of default do increase, 

quite significantly (Figure 7). Conversely, if the drought were to 

ease, the probabilities of defaults decrease on average in our 

simulations (Figure 8). 

FIGURE 7: SIMULATION OF FUTURE DEFAULT PROBABILITIES UNDER 

DECREASE OF THE SWI 

 

 

FIGURE 8: SIMULATION OF FUTURE DEFAULT PROBABILITIES UNDER 

INCREASE OF THE SWI 

 

GOING FURTHER 

This study paves the way to further work. First, this work could 

be reproduced with enriched datasets, including transition of 

ratings. Secondly, the fact the correlation coefficient 𝜌 very 

often saturates to its lower bound during the calibration 

procedure could be further investigated.  

 

7. Those two in-house scenarios are highly nonrealistic: in the worst scenario 

provided by Intergovernmental Panel on Climate Change (IPCC) 

Representative Concentration Pathway (RCP) 8.5, the SWI should decrease 

by 10% by 2050 over the full metropolitan territory (it is of course highly 

dependent on the geographical area). 

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=301&id_rubrique=40
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=301&id_rubrique=40


MILLIMAN WHITE PAPER 

Climate stress tests on corporate bonds 6 December 2024 

A structural approach linking equities 

and credit spreads 
OVERVIEW OF THE MODEL 

One of the advantages of these models is that they enable us 

to consistently the model equity and debt data of a company. 

Starting from the original Merton model, Hull, Nelken and White 

(see MertonAndVol in References) have shown a way to 

compute the implied volatility of derivatives whose underlying 

basis is the equity index of the company, but such a model 

involves complex calculations and could lead to unstable 

results. An advanced framework, which allows us to link 

equities and credit spreads, is the so-called CreditGrades 

model, see CredGrad in References. CreditGrades is an 

extension of Merton’s structural approach enhancing an initial 

limitation of the original model: short maturities are materially 

underestimated in Merton’s model due to a constant default 

barrier. This barrier represents the level at which the company 

defaults: in CreditGrades, this barrier can be stochastic. 

Besides, some extensions of CreditGrades, especially the one 

proposed ExtCredGrad (see ExtCredGrad in References), use 

well-known dynamics to model the asset value of the company. 

For instance, one can model equity dynamics under Heston’s 

model, where variance is modelled through a Cox, Ingersoll, 

Ross (CRI) process.  

In this paper, we only consider a dynamic with stochastic 

variance and zero spot/variance correlation. Let 𝑉 be the value 

of the firm’s assets, 𝑆 the value of the stock, 𝑟 the time-

dependent risk-free rate, 𝑊, 𝑊𝜈 two independent standard 

Brownian motions, 𝜅 the mean reversion speed, 𝜈∞ the mean 

reversion level of the variance process and 𝜔 the volatility of 

the variance process. By the very nature of these parameters, 

we impose 𝜔 > 0, 𝜅 > 0, 𝜈∞ > 0. The stochastic evolution of the 

process value and its variance is set to: 

dVt

Vt
= r(t)dt + √νtdWt, (E1) 

𝑑𝜈𝑡 = 𝜅(𝜈∞ − 𝜈𝑡)𝑑𝑡 + 𝜔√𝜈𝑡𝑑𝑊𝑡
𝜈, 

where it should be noted that ℙ(𝑣𝑡 ≥ 0) = 1.  

The stock dynamics can be deduced using the following 

relationship: 𝑉𝑡 = 𝑆𝑡 + 𝐷(𝑡), where 𝐷 represents the level of 

debt of the company, deterministic and such that 𝐷(𝑡) =

𝐷(0)𝑒∫ 𝑟(𝑠)d𝑠
𝑡

0 . Hence, because d𝐷(𝑡) = 𝑟(𝑡)𝐷(𝑡)d𝑡, we deduce 

from (𝐸1) that: 

dSt

St

= r(t)dt + √νt

St + D(t)

St

 dWt. 

Using this stochastic differential equation enables us to 

compute prices of derivatives whose underlying basis is the 

equity value of the company. Furthermore, we are interested in 

modelling the event of default of the given company. To do so, 

the model ExtCredGrad considers that the company will default 

when the stock value hits 0: this random date is denoted by 𝜏

∶= inf{0 ≤ 𝑡 ≤ 𝑇, 𝑆𝑡 ≤ 0}. The conditional survival probability at 

date 𝑇 knowing information at time 𝑡 ≤ 𝑇 is denoted by 𝑄(𝑡, 𝑇)

∶= ℙ(𝜏 > 𝑇 | ℱ𝑡) (see Appendix for a discussion of this formula), 

with (ℱ𝑡)𝑡≥0 the filtration generated by the Brownian motion 𝑊. 

The credit spreads at time 𝑡 for a maturity 𝑇 is then usually 

approximated by  

φ(t, T) ∶=
− ln(Q(t,T))

T−t
.  

In our analysis, we are particularly interested in obtaining 

analytical formulas for two quantities: the credit spread and the 

call option price. It will allow us to calibrate the model either on 

spread data or option data.  

To be able to calibrate the model, analytical formulas 

regarding both credit spreads and derivatives (call/put 

options) on the stock should ideally be derived. It turns out 

that the considered extension of the CreditGrades model 

offers several closed-form formulas.  

The call price at time 𝑡 for a maturity 𝑇 at a strike price 𝐾 and a 

spot level at 𝑆 is given by: 

C(t, T; S, K) = (D(T) + K)e− ∫ r(s)ds
T

t Z2(t, T, y, b) 

The expressions of the functions 𝑍1 and 𝑍2 are given in the 

appendix. 

Regarding the function 𝑄 that appears in the formula of the 

credit spread, it expresses as: 

Q(t, T) = ey/2Z1(t, T, y). 

Using these formulas, the calibration procedure is then quite 

standard. Let 𝜩 be the set of parameters of the model to be 

calibrated to market data:  

Ξ ≔ (S0, D(0), κ, ν∞, ν0, ω), 

and (𝜑𝑖)𝑖=1,..,𝑁 the market spreads. 

We need to solve the following optimisation problem: 

Ξ∗ = argminΞ ∑(φ(0, Ti) − φi)
2

N

i=1

 

The problem is of the same form for a calibration on implied 

volatilities. We compute the price of call options in our model, 

get the implied volatility by inverting the Black-Scholes formula 

and compare it to market value by measuring the sum of the 

square distance to each singular embedded option prices. 
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CALIBRATION ON MARKET DATA 

We now propose to illustrate how the model can be used to 

include climate risk considerations.  

We use market data related to credit spreads based on seven 

classes of ratings (AAA to CCC, as above, quoted on Euro 

Market as of 31 March 2024) gathering data from undertakings 

of all the sectors of activity and data relative to the implied 

volatility of call options (those comprising implied volatilities for 

relative strikes between 60% and 140%, for maturities between 

1 and 10 years). We use the data to constitute benchmark 

calibrations (either by calibrating it on spreads or on implied 

volatilities; we don’t need to try a joint calibration), to which we 

will compare our future experiments below.  

Those market data will be used alongside the scenarios 

coming from the ACPR’s second climate stress test.8 We shock 

the term structure (uniformly) of corporate bonds with the 

values found in those scenarios and analyse how this 

deformation translates into deformation on the implied volatility 

surface.  

The considered ACPR scenarios are the following: 

 Long-term “Below 2°C”: This scenario corresponds to an 

orderly transition towards a low-carbon economy, with 

policies implemented as of today. 

 Long-term “Delayed transition”: This refers to the scenario 

in which policies are not implemented immediately to 

counter the effect of climate change but will eventually be 

implemented in haste from 2030. 

 Short-term: This is a short-term scenario (five-year 

horizon) that aims at capturing the macroeconomic effect 

of a sudden increase of physical risk (following a 

succession of extreme natural disasters in France). 

CONVERTING CORPORATE BONDS SHOCKS INTO 

IMPLIED VOLATILITIES SHOCKS 

We first calibrate again our model but now using stressed 

credit spreads (and unstressed market volatilities). The 

prescribed shocks under the “Delayed transition” scenario are 

given below: 

HORIZON SHOCK (BPS) 

2025 +25 

2030 +30 

2035 +35 

2040 +40 

Those stresses are applied uniformly on the full credit curves. 

After having calibrated the parameters on the spreads, we can 

compute call option prices, and thus implied volatilities, with the 

obtained parameters; and we compare those implied volatilities 

 
8. ACPR. Scenarios and Main Assumptions, op cit.  

to the ones obtained in the benchmark experiments, in which 

we only used market data (no shock). We provide below the 

differences observed on the full volatility surface when using 

the parameters for rating BB, for two horizons (2030 and 2040). 

Figures 7 and 8 display the difference between the volatility 

obtained from stressed spread curves and the volatility 

obtained from market spreads of the same rating 

FIGURE 7: IMPACT ON VOLATILITY SURFACES FOR HORIZON 2030 – 

DELAYED TRANSITION 

 

FIGURE 8: IMPACT ON VOLATILITY SURFACES FOR HORIZON 2040 – 

DELAYED TRANSITION 

 

As expected, implied volatilities associated with stressed 

spreads are greater than volatilities associated with market 

spreads. Those impacts are distributed over the whole surface, 

mostly on small maturities and extreme moneyness. Besides, 

impacts have less magnitude as the horizon increases. 

Eventually, mean impact for 2030 is 10.25% whereas it is 

17.74% for horizon 2040. It clearly shows a higher impact for 

further horizons. 
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Secondly, we stress our spread curves using shocks for the 

“Below 2°C” scenario. Shocks used are: 

HORIZON SHOCK (BPS) 

2030 -10 

2040 -20 

 

The impact for horizon 2030 is displayed in Figure 9. 

FIGURE 9: IMPACT ON VOLATILITY SURFACES FOR HORIZON 2030 – 

BELOW 2°C 

 

Here the change is less important than in the first scenario. 

Indeed, shocks on volatility surface are globally smaller than 

1%; some impacts are negative. Again, this is something that 

was expected in this scenario. For “Below 2°C,” the spread 

shocks are negative. The skew for short maturities seems to be 

reduced whereas skews for higher maturities have higher 

volatilities. For 2040, the impact on implied volatilities is 

presented in Figure 10. 

FIGURE 10: IMPACT ON VOLATILITY SURFACES FOR HORIZON 2040 – 

BELOW 2°C 

 

 

We observe now that stressed volatilities are uniformly smaller 

than market ones. In this scenario, mean impacts are 0.27% for 

2030. It confirms our remark on Figure 9: shocks are quite 

small. For 2040, the mean impact is -1.05%. This is in line with 

expectations because credit spread shocks are negative. 

We finally provide illustrations related to the last scenario, 

associated with short-term impacts. For this scenario, shocks 

depend on the maturity of the spreads. During the calibration, 

we have applied the shocks given by the ACPR and 

extrapolated them in a piecewise constant manner, so that all 

the maturities included in the calibration are stressed. In these 

values, as one can observe, shocks are significant: 

HORIZON MATURITY T SHOCK (BPS) 

2025 𝑻 ≤ 𝟏 +110 

𝟏 < 𝑻 ≤ 𝟐 +140 

𝟐 < 𝑻 ≤ 𝟑 +150 

𝟑 < 𝑻 ≤ 𝟓 +140 

2027 𝑻 ≤ 𝟏 +110 

𝟏 < 𝑻 ≤ 𝟐 +150 

𝟐 < 𝑻 ≤ 𝟑 +150 

𝟑 < 𝑻 ≤ 𝟓 +140 

 

The resulting volatility gaps are shown in Figures 11 and 12. 

FIGURE 11: SPREAD FOR HORIZON 2025 – SHORT-TERM SCENARIO 

 

The model predicts a global and substantial rise of implied 

volatilities for the horizon 2025. This increase is particularly 

significant for large maturities (greater than three years). These 

results are confirmed by Figure 12. 
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FIGURE 12: SPREAD FOR HORIZON 2027 – SHORT-TERM SCENARIO  

 

Here, the bar plot indicates an even higher rise of implied 

volatilities. As said before, this increase can be particularly 

observed on high maturities. 

Finally, mean shocks for the last scenario are 9.22% for 2025 

and 12.53% for 2026. Those values are close to the ones for 

the “delayed transition” scenario, but slightly lower.  

CONVERTING IMPLIED VOLATILITIES SHOCKS INTO 

CORPORATE BONDS SHOCKS 

So far, we have observed how a stress on spreads reflects on 

implied volatilities. To conclude this section, we provide an 

illustration of the other way around. The goal is now to observe 

how a shock on the whole volatility surface impacts the credit 

spreads. Here, the shock is applied relatively on the market-

implied volatilities surface. We have chosen to add 10% on 

each volatility, that is, for all volatility 𝜎 in the surface, the 

shocked volatility �̃� is given by: �̃� = 𝜎 × (1 + 𝛿) with 𝛿 = 10%. 

We then compared the produced spread curve to the original 

one implied from the market surface. Results are presented in 

Figure 13. 

FIGURE 13: SPREAD CURVE FROM SHOCKED IMPLIED VOLATILITIES 

 

 

Spreads are positively impacted by a rise of the volatility. 

Hence a rise of implied volatility leads to a rise of credit 

spreads, indicating that debt could be riskier and pay more 

interest. 

Another aspect to consider is the quantity representing directly 

default risk: the probability of default. Considering the previous 

hypothesis, default risk should be higher in this configuration. 

We now plot the initial default probability curve (default 

probability as a function of the maturity of the debt) against the 

shocked curve obtained by calibration of the model on the 

shocked surface. 

FIGURE 14: DEFAULT PROBABILITY FROM SHOCKED IMPLIED 

VOLATILITIES 

 

The same experiment was also performed on negative shocks. 

This time we take 𝛿 =  −10%. Figure 15 presents credit spread 

from negatively impacted implied volatilities and Figure 16 

shows the resulting probability of default. 

FIGURE 15: SPREAD CURVE FROM SHOCKED IMPLIED VOLATILITIES 
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As expected, spread curve is negatively impacted as well. This 

indicates lower risks and thus lower default probabilities. This is 

confirmed by Figure 16. 

FIGURE 16: DEFAULT PROBABILITY FROM SHOCKED IMPLIED 

VOLATILITIES 

 

As expected, the new default probability curve is lower than the 

original one. We can conclude that implied volatility impacts 

directly default probability and credit spreads in a positive (for 

positive implied volatility shocks) or in a negative (for negative 

implied volatility shocks) way. 

Conclusion 
The final purpose of this paper is thus to help to design 

consistent climate stress tests. To do so, it describes in detail 

the simulation of scenarios (under both real-world and risk-

neutral universes) that integrate transition climate risk in the 

paths of credit spreads and equities. The main novelty of the 

proposed methodologies is that those two risk factors are 

consistently impacted by the climate risk factor, which is useful 

because insurance (or other investors) may have in their 

portfolio equity and debt on a company. The described real-

world approach is based on a systemic risk factor that embeds 

the climate change risk while the described risk-neutral method 

requires having a predefined (climate) stress test on either 

equities or credit spreads. Further work would consist of 

diffusing under risk-neutral measure a systemic risk factor that 

would affect both equities and spreads.  
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Appendix 
SPREAD FORMULA IN CREDITGRADES 

The price of a risky zero coupon (denoted by 𝑃𝑅) is given by 

the formula: 

PR(t, T) = 𝔼ℚ [e− ∫ r(s)ds
t

0  𝕝{τ>T} | ℱt], 

where ℚ is the risk-neutral probability measure, 𝜏 is the 

previously defined default time, 𝓕 designates the filtration of 

the Brownian motion and 𝒓 is the deterministic, time-dependent 

risk-free rate. We suppose the independence of the risk-free 

rate and the credit risk. Hence, we have: 

PR(t, T) = 𝔼ℚ [e− ∫ r(s)ds
t

0  | ℱt] 𝔼ℚ[𝕝{τ>T} | ℱt]. 

The first term on the left is the price of a zero coupon at time t 

noted 𝑃(𝑡, 𝑇). The second term is the survival probability 

𝑄(𝑡, 𝑇). Because the credit spread is expressed as the 

difference between the yield of a risk-free zero coupon and the 

yield of a risky coupon, the expression for 𝜑 is: 

φ(t, T) =
− ln(PR(t, T)) − (− ln(P(t, T)))

T − t

=
− ln(P(t, T)Q(t, T)) + ln(P(t, T))

T − t

=
− ln(Q(t, T))

T − t
. 

FUNCTIONS 𝒁𝟏AND 𝒁𝟐 

Z1(t, T, y) =
2

π
∫

eA(T−t,z)+B(T−t,z)νtz sin(zy)

z2 + 1/4

∞

0

dz, 

y = ln (
St + D(t)

D(t)
). 

Z2(t, T, y, b)

= ey − eb

−
e

y
2

2π
∫

[eA(T−t,z)+B(T−t,z)νtcos(yz) − cos((y − 2b)z)]

z2 +
1
4

dz
∞

0

, 

y = ln (
St + D(t)

D(T) + K
) + ∫ r(s)ds

T

t

, b

= ln (
D(t)

D(T) + K
) + ∫ r(s)ds

T

t

. 

FUNCTIONS A AND B 

Functions A and B are given by the following formulas: 

A(τ, k) = −
κν∞

ω2
[ψ+τ + 2ln (

ψ− + ψ+e−ζτ

2ζ
)] , 

B(τ, k) = − (k2 +
1

4
)

1 − e−ζτ

ψ− + ψ+e−ζτ
, 

ψ± = ∓κ + ζ, ζ = √κ2 + ω2 (k2 +
1

4
). 
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